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Abstract
Much progress has been made in the investigation of perceptual, cognitive, and action mechanisms under the assumption
that when one subprocess precedes another, the first one starts and finishes before the other begins. We call such processes
“Dondersian” after the Dutch physiologist who first formulated this concept. Serial systems obey this precept (e.g.,
Townsend, 1974). However, most dynamic systems in nature do not: instead, each subprocess communicates its state to its
immediate successors continuously. Although the mathematics for physical systems has received extensive treatment over
the last three centuries, applications to human cognition have been exiguous. Therefore, the pioneering papers by Charles
Eriksen and colleagues on continuous flow dynamics (e.g., Eriksen & Schulz, Perception & Psychophysics, 25, 249–263,
1979; Coles et al., Journal of Experimental Psychology: Human Perception and Performance, 11(5), 529, 1985) must be
viewed as truly revolutionary. Surprisingly, there has been almost no advancement on this front since. With the goal of
bringing this theme back into the scientific consciousness and extending and deepening our understanding of such systems,
we develop a taxonomy that emphasizes the fundamental characteristics of continuous flow dynamics. Subsequently, we
complexify the treated systems in such a way as to illustrate the popular cascade model (Ashby, Psychological Review, 89,
599–607, 1982; McClelland, Psychological Review, 86, 287–330, 1979) and use it to simulate the classic findings of Eriksen
and colleagues (Eriksen & Hoffman, Perception & Psychophysics, 12(2), 201–204, 1972).
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Donders 1868/1969 and many other early scientific
psychologists conceived of the mind as a series of more
or less independent subsystems, with nonoverlapping,
discrete processing durations or stages (Sanders, 1977;
Sternberg, 1969; Townsend, 1972; Van Zandt & Townsend,
2012). The non-overlapping stages condition was typically
complemented through Donders’ axiom of pure insertion,
wherein it is assumed that a psychological process can
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be inserted or withdrawn through manipulation of the
psychological task (Ashby & Townsend, 1980; Roberts &
Sternberg, 1993; Townsend & Ashby, 1983; Zhang, Walsh,
& Anderson, 2018). Such an idea is closer to the activities
of a middle 20th-century digital computer’s accumulator
operations than a series of simple electrical components
with lumped systems properties; or the apparent neural
structures and dynamics linking cortical regions; or,
indeed, than the analogue connectionist and distributed
memory of modern neuralistic theorizing (Anderson, 1995;
Ashby, 1952, 1982; Grossberg, 1988; Hertz et al., 1991;
McClelland 1979). We denote this type of architecture and
information processing a continuous flow system.

Discrete flow systems have been the overwhelming
choice in human information processing and cognition. The
history of psychology, reaching back into the early days of
philosophy, has always counterposed more analytic, atom-
istic conceptions of perception, cognition and action with
more global, intuitive, flowing and dynamic approaches.
One can find these opposing forces depicted in any his-
tory of scientific psychology (e.g., Boring, 1957). Perhaps

/ Published online: 7 January 2021

Attention, Perception, & Psychophysics (2021) 83:748–762

http://crossmark.crossref.org/dialog/?doi=10.3758/s13414-020-02180-2&domain=pdf
http://orcid.org/0000-0002-5569-3209
mailto: jtownsen@indiana.edu


because of their relative ease of formal analysis, the discrete
and finite seem to attract mathematical theory and some-
times, even empirical assessment at an earlier and greater
rate than the more global, infinite, and intuitive. The latter,
even in the present day, sometimes seem to languish more
in the world of verbal description and metaphor.

This propensity in behavioral science has persevered
despite the ubiquity of continuous flow systems in other
sciences and engineering. We shall cite other investigators
who employed continuous flow concepts in their narrative
below but first we call out the pioneer who not only foresaw
the necessity of exploring the latter types of systems, but
even offered experimental evidence to support the concept
of continuous flow. That pioneer was, of course, Charles W.
Eriksen. He and his colleagues, using the fairly primitive
tools of electromyography, showed that the nature of
surrounding flankers influenced the human motor response
throughout its trajectory (Coles et al., 1985; Eriksen &
Hoffman, 1972, 1973, 1974, 1979).

It should be a given that some important brain processes
involve continuous flow mechanisms. For instance, dynamic
systems have a history of utility in development, motor
control, and neuroscience (see, discussions in, e.g., Haykin
& Fuster 2014; Thelen & Smith, 1994). Given the certainty
that at least some tasks and particular subsystems of the
information processing chain obey continuous rather than
discrete flow, it may seem odd, outside of the above
historical and epistemological comments, that so little
theoretical and even empirical work has been accomplished.
Further, the continuous flow approach might have been
thought to be the first choice even of an early cognitive
theorist in the nineteenth century, due to their visibility in
the hard sciences and engineering of the period, and the
fact that many embryonic psychologists of the nineteenth
century were physicists or physiologists. The continuous
flow notion is also much more consonant with the more
recent dynamic systems initiative in cognitive science
(Bingham, Schmidt, & Rosenblum, 1995; Busemeyer &
Townsend, 1993; Heath & Fulham, 1988; Molenaar, De
Gooijer, & Schmitz, 1992; Port & van Gelder, 1995; Thelen
& Smith, 1994; Patterson et al., 2013).

Rigorous mathematical treatment of the construct of con-
tinuous flow in psychology is rare, but there are nonetheless
several key studies. A study notable both for its innovation
as well as deriving some results concerning selective influ-
ence predictions on response time was published by Taylor
(1976). That paper considered the possibility that successive
sub-processes could overlap in their processing times.

Perhaps the first paper to commit to a continuous flow
across stages was McClelland’s cascade model (McClel-
land, 1979) embellished with the addition of a Gaussian
random variable acting as decision threshold. The cascade
model was, despite belonging to a classical continuous flow

type of dynamic system, shown to be capable of making
approximately additive predictions usually associated with
Dondersian structures. The original Cascade Model was
followed up by a commentary and allied derivations from
F.G. Ashby 1982. The cascade model represents neither
the simplest and most constrained, nor the most general,
continuous flow type of system. However, it does exemplify
several of the important non-trivial characteristics that a
dynamic system might possess.

In what follows, we consider these characteristics and
provide a taxonomy of system aspects that we hope will
prove to be valuable for the study of cognition, motor
control, perception, memory search, and categorization and
decision making. The style of our presentation is inclined
toward the systematic as opposed to the colloquial. Our own
experience with quite complex material suggests to us that,
with so many technical distinctions, a too-colloquial fashion
can make it very challenging when engaging with the
material for comprehension, cross-checking and research
purposes. We try to ameliorate this parched rigor with some
examples and toward the end, an application and look to the
future.

Characteristics of activation systems

Structures and skeletons

By structure, we mean a graph that shows which
hypothesized subsystems (= subprocesses) connect with
each other and the order of processing among those
pictured. It is critical to keep structure separate from other
notions such as the type of state space, the mode of
information flow, and the like. Note that in this sense, serial
systems and sequential, continuous flow systems satisfy
the same type of structure but not the same architecture,
because we reserve the term serial architecture to include the
postulate of a Dondersian, discrete flow (see, e.g., Townsend
& Ashby, 1983, chapter 2).

Our targeted structures will be the simplest one can
think of. They form a simple so-called total order of the
underlying subprocesses (also called a linear order or simple
order). A total order assumes transitivity, connectedness
and antisymmetry. In such a skeleton, assume p, q, r are
subprocesses in the set A. Then transitivity implies that if
p ≥ q and q ≥ r , then also p ≥ r . Connectedness
implies that if p, q are in A then either p ≥ q or q ≥
p. Antisymmetry is the condition that if both p ≥ q

and q ≥ p then p = q. We point to a very large and
natural set of structures where everything flows forward so
that transitivity is in force, antisymmetry also occurs and
reflexivity is true (i.e., p ≥ p) but connectedness does not
hold in general. The last means that some branches in the
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structure are not ordered relative to one another. This is the
notion of a partial order (that is, the relations of transitivity,
reflexivity and antisymmetry hold). They will be a natural
generalization of our simple forward flow systems.

The appearance of such structures is of a set of
subprocesses which flow from start to finish, and where
individual processes may, but need not, have connecting
paths between them. Parallel and serial systems are special
cases, and no such network permits feedback to occur
(Townsend & Ashby, 1983, chapter 1). In such systems,
the engineer or scientist defines to what the final ‘stop’
node refers. In a psychological model, it might mean the
actual pushing of a reaction time button, the point at which
information accrual advances beyond a decisional threshold
or when some other presumably punctate event occurs.
The Eriksen and colleagues’ novel design and method of
measuring the hand’s trajectory may auger a new dawn of
strategies for systems-identification that go far beyond the
traditional response times and accuracy measures. The fairly
recent experimental procedures oriented toward analysis of
continuous motor trajectories, represented in the present
collection by Erb, Smith, and Moher (2020) are perhaps
the most obvious and natural inheritors of the Eriksen
continuous flow tradition.

When supplemented with assumptions about flow and
stopping rules that specify when a subprocess can get
underway, and characterization of subprocess durations,
behavioral or physiological predictions can be made.
For instance, can a subprocess begin when any of
several paths ending on its start node are finished, only
when are predecessors are complete or some other more
complex rule), actual systems emerge. The PERT (program
evaluation and review technique; an acronym drawn from
operations research networks referred to above) are partially
ordered structures which assume discrete time processing
among constituent processes and typically an exhaustive
stopping rule between the just-preceding processes and the
subsequent processes into which they feed. They have been
thoroughly investigated as models of cognitive processing
times by Schweickert and colleagues (Fisher & Goldstein,
1983; Schweickert, 1978, 1989, 2012).

The individual processes may be deterministic or
stochastic and the latter are, of course, more realistic.
Figure 1a shows a prototypical PERT network called
an embellished Wheatstone bridge (Schweickert, 1989;
Townsend & Schweickert, 1989). This network is kind of
a microcosm for the layout of subprocesses a and b, since
there is a path through both a and b, a path that goes
through either without passing through the other, and a path
that includes neither. Typically, PERT networks have been
endowed with an exhaustive stopping rule (all processes

feeding into a subsequent node and its process must be done
before the succeeding one can begin and there is no overlap
of processing times (Schweickert, 1978) but other stopping
rules are readily available (Schweickert, Fisher, & Sung,
2012).

As noted above, serial (Fig. 1b) and parallel (Fig. 1c)
systems are special cases of PERT networks. However, a
sequentially arranged architecture does not imply seriality
because, as observed above, the latter also demands that
the processing times of the successive stages not overlap
whereas a sequential architecture could have imposed on
it, a continuous flow, or other hybrid type of processing
(see below). The same is true of more complex networks,
in that an investigator may use a PERT-like skeleton to
represent the architecture, but assume a form of continuous,
rather than discrete, flow processing. Our concentration
in this paper is on a single sequential structure and flow
of processes, as in Fig. 2. Feedback is allowed within
each constituent sub-process but we do not allow feedback
between them.

a

c
d
e

b

f
(a)

a b

(b)

a

b
(c)

Fig. 1 PERT network representations of three system architectures are
shown. Under the assumptions of exhaustive processing and discrete
time processing (i.e., that a process feeds into subsequent processes in
an all or none fashion, at a single instant in time, and that subsequent
processes may not begin processing until all preceding processes have
finished. a An embellished Wheatstone bridge with concurrent and
sequential processes, b two serial processes, c two parallel processes
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f( ) g( )
u(t) x(t) y(t)

Fig. 2 A simple two-component, sequential architecture. In Table 1,
three information processing models from the literature with this
general architecture are summarized within our taxonomy. In our ter-
minology, u, x, and y are time-varying states: u represents the input
to the system, x is the result of some transformation on this input by

the operator f (), and y is the result of some transformation on x by
an operator g(). Boxes therefore represent operators, while arrows rep-
resent the transmission of state variables (which may or may not be
associated with time lags)

Characterization of system state space and input
and output spaces

A minimally complete description of a processing system
will include the structure, the time variable, an input space,
and a state space for the state of processing or activation
associated with each subsystem. Typically, the output of a
subsystem will be taken as the specification of the state of
the subsystem at the juncture.

In the general purview here, we desire that the state
and time descriptions be allowed to be different, although
our specific taxonomy will be confined to continuous flow
systems. We conceive of systems where the input and
outputs, and possibly the states, are continuous, and yet
the state transitions may be discrete. A good example
is a Dondersian system where each subsystem acts as
a separate temporal stage and overall processing is thus
strictly serial with each successive stage only beginning
when the previous one is completed (e.g., Townsend, 1974).
We can mention this type of system in terms of our
present discussion of forward-flow models. However, such
constructions are outside most of our taxonomy because
they require concepts like temporal lag to make them
obey Dondersian principals. Therefore, after a little more
discussion of these to aid in the comparison with the corpus

of continuous flow models, we shall drop them from our
descriptions (but see, e.g., Townsend and Ashby, 1983, pp.
401-409).

Let us call this temporally discrete transmission.
Certainly, we do not want to rule out the possibility that
the underlying states are continuous even though processing
is discrete in this sense (see, e.g., Table 1). As noted by J.
Miller 1988, processing internal to the distinct subsystems
could still lie on a continuum and the information
transmitted (discretely in time) to the next stage, could
be continuous too (e.g., any positive or negative number).
When transitions are continuous among subsystems, the
information flow is going on between two such subsystems
all the time, at least on a given time interval. If a
system is also lumped, then information is transmitted
throughout the subsystems without any lag. The usual
theory of ordinary differential equations does not include
reference to systems with lag (see, e.g., Cunningham, 1958;
MacDonald, 2013), although they abound in many physical
(and certainly neural) phenomena. Lagged systems call
for the use of difference-differential equations, differential-
integral equations or other rather arcane devices (see the
references above for certain techniques and applications to
biology). We will witness a form of lag in Table 1, in an
example of a Dondersian system where the stage states are

Table 1 Summary of the taxonomy dimensions and example models

Model

Dondersian Composite Cascade

Townsend (1974) Schweickert (1989) McClelland (1979)

Architecture sequential sequential sequential

Independent variable time time space

Nature of state spaces Discrete or continuous in state;
continuous in time: t, x, y ∈ R

+
Continuous in state and time:
t, x, y ∈ R

+
Continuous in state and time:
t, x, y ∈ R

+

System memory Memoried Memoryless Memoried

Stochasticity Deterministic Deterministic Deterministic

Example equation u = 0, t < 0 x = f (u, t) dx
dt

= f (x, u) = −a(x − u)
dx
dt

= −a(x − u) y = g(x)
dy
dt

= g(y, x) = −b(y − x)
dy
dt

= −U(x − cx)b[y − x(t − tx)]
tx = first time s.t. tx = cx

ty = first time s.t. Y (ty) = cy
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basically continuous, but transmission occurs only when the
preceding state reaches a criterion. Otherwise, our systems
will be of the lumped variety.

The class of Dondersian systems does not usually specify
the details of processing, in particular, there is usually lack-
ing a state space of activation. All we assume is that
whatever they are, the subsequent processes are nonoverlap-
ping in their operations. However, one subset of Dondersian
systems could conceive of the state space as discrete with
the “clumps” of information passed on in their entirety,
within a general framework of discrete automata (e.g.,
Townsend & Ashby, 1983, pp. 409-412). However, another
conception is that the state space is continuous but that a
lag is introduced in transmission from one state go the next,
that is greater than or equal to the processing duration of the
present stage (see Table 1 and Townsend & Ashby, 1983, p.
408). Thus, delayed, but continuous, systems theory gives
one approach to the study of a form of Dondersian systems
theory that may be more realistic than discrete automata the-
ory for some situations. Additional discussion of lag and other
generalizations of these dimension will be visited in the
Discussion. We now proceed to set up a rigorous basis for
describing the dynamics of sequentially arranged systems.
It follows closely the terminology of systems theory such as
Klir (1969) and Booth (1967) and Padulo and Arbib 1974.
It can readily be expanded to encompass more general
architectures.

We first describe the critical parts that will make
up our continuous flow dynamic systems. Our next
step will be to assemble the systems more or less in
order of increasing complexity. Patently, systems based
on differential equations are more particular than those
not making differentiability assumptions. It will prove
propitious to specialize each of the cases to differential
equations after the more general dynamics are considered.

Let the input space be U and the output space be designed
Y with the time set being T . Let the state space of a first
subsystem be X and that of a second subsystem, Y . That
is, Y designates both the state of the second subsystem
as well as the final output. Some situations might demand
yet a third space for a distinct set of outputs determined
by Y . We shall not need that extension. Lower case letters
indicate specific values. The transition operator that leads
from the input to a state in X is F , that for Y is G. Let
us assume that in some cases, the state itself can help
determine the next state (which occurs instantaneously in a
continuous state system). In actual cases, this dependence is
often seen in the local description given by a difference or
differential equation. In most realizations of such systems,
Y will be compared with a decision threshold that, when met
or exceeded, drives a decision and response. However, Y ,
or its facsimile, could also drive a continuous response, for
example, something like a hand-in-motion-toward a choice

between two responses. This is exactly what we’ll see in our
Eriksen flanker model later on.

The systems we consider here allow an initial condition
on X but, not on Y . And so here we need to address
a set of initial (no pun intended) questions. First, does
a subsystem age, meaning does the subsystem change in
its characteristics simply as a function of time? We refer
to an ageless subsystem as time invariant otherwise, time
variable. Second, is there an input u(t) to the X subsystem?
In most cases, we will assume so. Third, is the evolution of a
subsystem a function of its present state? The very simplest
of systems may not be but as we will see, most will be. In
fact, it will be shown that, in general such a property implies
a type of memory in the subsystem.

We begin with the simplest systems, in which there
is no input, and the next immediate state is a function
only of input and/or time but not the current state. Thus,
they are memoryless, and they are time invariant in both
subprocesses. The resulting map is

F : T → X

meaning that F is a direct function (only) of time t or
equivalently, x = F(t). But then, instantaneously, the Y

subsystem maps the state x into a particular value y, that is,

G : X → Y,

or in everyday notation,y = G(F(t)). This is the most
elementary dynamic with which we deal and constitutes
the class of systems investigated in the seminal work of
Schweickert (Schweickert, 1989; Schweickert & Mounts,
1998). These are known as composite functions. We can
trivially insert an input u(t) as in

F : T × U → X

and

G : X → Y

In addition, it is a simple task to let such a subsystem
also depend on an initial condition, which we implement
here only for the x subsystem. The result is a generalized
compositional system. Here, x = F(t, u, x1) and y =
G(t, x) = G[t, F (t, u, x1)]. Now Y is an actual function
of the single time t , and the exact values of u, x at that
time, plus an initial condition specified by x1. Certainly, G

is now an ordinary function of the three variables t, x and
y. In the special case that G is a function only of x over
the time interval but not separately of t , then we obtain
y = G[F(t, u, x1)]. This composition of functions can be
thought of as a generalization of time invariant systems,
where the state transition of y depends only on the current
state, and not separately of time, t . On the other hand,
when there is a t present in front of the F term, then
the system is said to be time variable. So it is possible
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to have either time variable or time invariant systems with
or without memory. Composite systems are basically the
type of continuous flow system, or partial output, systems
investigated by Schweickert and colleagues (Schweickert,
1989, 1998), and in some of our results below.

The most general of continuous flow dynamic systems
and those that are required of the great bulk of applications,
demand a dependence of the transition functions over an
entire time interval, say (t1, t).1 This means that the notation
and math must take into consideration input u(t) to X or
X to Y over the entire temporal interval (t1, t). This leads
the mathematical operations into so-called functionals.
Recall from above that composite functions map spaces or
functions in a point-to-point fashion. For instance, in the
above, a particular value of u at time t , u(t) is mapped
directly to x(t).

In contrast, functionals map functions over entire
intervals from, say the U space to the X space, as in u(t))
into other functions (e.g., x(t) over the interval (t1, t)).
Thus, the value of x(t) will be a function of that entire
interval, from t1 to t , not just that at t . In many cases, this
dependence is due to a feedback loop from the output (e.g.,
x(t)) back into the input (e.g., perhaps added to an external
input, u(t)). In general, there is a mathematical equivalence
between memory due to a feedback loop and a time-
dependence that is due to, for instance, system aging. This
equivalence can manifest itself as a quantitative equivalence
between a closed-loop system and an open loop system. The
global flow transition functions are easily expanded to get

F : T × T × X × X × U → X

The time has come to introduce differential equations
which are arguably one of the most valuable tools
in all areas of engineering and science. Science has
made considerable progress through differential equations.
These express the rates of change of the state variables
over time, as functions of the several variables and
parameters of the system. In the classical theory of
ordinary differential equations, weak regularity assumptions
lead to a unique global description following from a
specific local description (Grimshaw, 1990; Sanchez,
1979). Nevertheless, the latter may not be determined in
closed form, that is expressible in easily understood, and
compactly written functions. For instance, even in linear
systems which are time variable (i.e., the system “ages”
so that the same input with the same initial conditions
but, at two different times can have extremely different
effects), this can occur. More exotic examples are obviously
encountered in chaotic systems (e.g., Devaney, 2018;

1In the technicalities of mathematical operations in systems theory, it
can be critical to discern between, say, open intervals such as (t1, t)

and closed intervals like [t1, t] but we can with impunity, avoid such
niceties here.

Townsend, 1990). Hence, for this and other reasons, the
differential equations form an axis of theoretical interest.
Even when no closed form is available, the differential
equations can usually be approximated by difference
equations and results computed on digital computers.

Continuing with our notation, we let the instantaneous
transition be designated by small f to show how the rate of
change of state occurs. We pause to observe that our F and
G are produced by integrating the derivatives d

dt
x(t) and

d
dt

y(t) respectively. As before, the more global F and G are
often referred to in the literature on dynamic systems as flow
as opposed to the generating differential equations. We shall
return to the former more global description presently.

Written in a local version as a differential equation we
have,

d

dt
x(t) = f (t, u, x)

The presence of t in the parenthesis means that, in general,
the system can be time variable, that is, nonautonomous.
As intimated above, for instance, the system might fatigue
or even warm-up as a function of time. Further, note that
because we are dealing with instantaneous transitions here,
we do not require an entire time interval for the expression.
As we will see, this facet does not imply that the integral,
resulting in the explicit mapping F , as before, will not be a
functional.

A solution to this type of differential system must
involve integration to reverse the differentiation. Under
some regularity conditions, one can find a solution by taking
an approximation to whatever the real solution is and keep
iterating the integration until the true solution is approached
asymptotically. In fact, that is how it was originally proven
that such a differential equation has one and only one
solution (Sanchez, 1979). The presence of u means that the
rate of change is a function of some input as well. And, x

itself implies that the rate also depends on the state at exactly
time t and this in itself suggests that the X subsystem can
be expressed as possessing a feedback loop. Figure 3 shows
the important case of a linear system with dependence on
u(t), t and x. This particular type of system will be detailed
below, but it does serve to reveal the types of critical aspects
of time-invariant, linear systems.

Next, if

d

dt
x(t) = f (u, x)

the system is said to be autonomous because the subsystem
does not change inherently over time, so that the changes
of state, x, are only dependent on the current state of the
system and the input u.

If u = 0 for all time t > t1, then we are observing a
zero-input system. Such a system might be able to deliver
non-trivial output due to its initial state and memory or
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u dx/dt x

r = h(x, t)

r

Fig. 3 Internal feedback through an integrator, illustrating a model of a
system with memory. If the transformation h() on the “fed back” state
x does not depend explicitly on time and is linear and sign inverting
(i.e., r = −ax), this represents the familiar negative feedback loop

simply nonlinear characteristics. For instance, nonlinear
systems can seem to create or pump in, new energy from no
obvious apparent source.. In this case, we can put down the
governing equation as

d

dt
x(t) = f (t, x)

Inputs to a system are often defined by adding on a
function of time to the terms involving only the state
variable and its derivatives. If the system possesses no
internal feedback or other innate time dependence, the x is
excluded on the right-hand side, so that

d

dt
x(t) = f (t, u)

From a more abstract standpoint, the only way in
which a subsystem, say X, can exhibit its system
characteristics through the memory in a system is by X

being nondegenerate in the domain of the functional F . That
is, past values of the input u can only affect the present
transition by way of the memory of X. But this is again
simply the feedback operation shown in Fig. 3.

In general, the functionals in a system take functions into
numbers. That is, F and G are typically not true functions,
because the latter take numbers into numbers. However,
a special case ensues when the subsystems associated
with subsystems X and Y are limited to an infinitesimal
time point (i.e., t2 = t1). However, the possibility of
a strategic role for initial conditions as the interplay
between behavior and neuroscience evolves, should not be
overlooked. Moreover, much the same can be said with
regard to the input function u.

We now specialize our account to linear systems. Most
readers are familiar with linearity: F is a linear function of
its inputs if and only if F(u1 + u2) = F(u1) + F(u2)

and F(au) = aF(u) for every constant a, and similarly
for the second, Y stage. Operations like multiplication,
taking the logarithm, taking the powers (e.g., quadratic as
in x(t)2, etc.) move a system into the realm of nonlinearity.

For instance, Grossberg’s (1988) theoretical approach has
utilized nonlinear elements, and especially multiplication,
to good advantage.

When we study a zero-input linear system it is called
homogeneous, otherwise it is non-homogeneous (e.g.,
Luenberger, 1979; Padulo & Arbib, 1974) When a system
is linear with an input, the transition state mapping and
therefore the flow, is given by a weighted integral, where
the weight function of the subsystem is called the impulse
response function called h(t). This system does possess
memory, except in degenerate circumstances and therefore
Figure 3 would retain the “T” symbol. The impulse response
function h determines the importance that the input from
different points in time in the past has on the current state,
quite manifestly an indicant of memory (e.g., Townsend &
Ashby, 1983, pp. 401-409). The name comes from the fact
that if the input occurs at a single point (e.g., an impulse or
spike; mathematically, a Dirac delta function; see below),
then the system’s response, x(t), equals h(t). A special case
of some interest is where the impulse response function is
exponential in form, demonstrating a decreasing importance
of input events as they recede into the past. However, many
systems possess “memories” that are first increasing, then
decreasing, functions of time past (Busey & Loftus, 1994).

Again, if a linear system is time variable and has an input,
then h is a function of the present time t , as well as the past
time t ′, and the linear global state transition operator is given
by

x(t) =
t∫

t1

h(t, t ′)u(t ′)dt ′.

This term is referred to as the forced-function solution
because the output at time t in this term depends on (and
only on) what the input is from t = 0 to time t . However,
if the linear differential system is time invariant, it is called
homogeneous and by definition has no input, and the output
is the single term x(t1) which is, of course, just the initial
condition and the solution is referred to as the free response
or free solution.

When we combine both the free and forced parts we
receive

x(t) = x(t1) +
t∫

t1

h(t, t ′)u(t ′)dt ′.

Notice the summation of the term x(t1) and the integral
involving the input. This is a standard property of linear
systems. Moreover, we can immediately see the linearity
of such a system by observing the result of sending in the
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sum of two inputs u(t) + v(t) (and ignoring any initial
conditions):

x(t) =
t∫

t1

h(t, t ′)[u(t ′) + v(t ′)]dt ′

However, if the basic system (ignoring input as a function
of time) is autonomous, then the state transition depends
only on the difference between the present time and the
past time, not the actual value of the past time, so the
impulse response function h(t, t ′) = h(t − t ′) replaces the
general nonautonomous term in the above equation (e.g., see
Townsend & Ashby, 1983, pp. 401-409). It can be seen that
when the dummy variable t ′ is equal to t , the present, h(0)

appropriately gives the weight when no memory is required,
that is we are at the present instant of time. Assuming the
input begins at t1 = t then when t ′ = 0, the memory is,
aptly, t time units long.

Retreating for a moment back to possibly non-linear
composite systems we confront the fact that they are so ele-
mentary that one would rarely find such a process in natural
phenomena described by way of differential equations. But,
for completeness and assuming differentiability, the sister
differential equations would be

d

dt
x(t) = d

dt
F (t) = f (t)

and

d

dt
y(t) = d

dx
G(t)

d

dt
x(t).

And the comparable flow is given by

x(t) = F(t) =
t∫

0

f (t ′)dt ′

and then

y(x(t)) = G(F(t)) =
t∫

0

(
d

dx
G(t)

)(
d

dt
x(t)

)
dt

In a way, this expression is both trivial and complex since
we don’t have any further information about the functions.

We can next incorporate an input function u(t) after t and
before F . Written in a way that readers may find even more
intuitive, we can now express the first stage as

d

dt
x(t) = f (t, u)

and the second as

d

dt
y(t) = g(x).

More complexity can be had by including an initial starting
state but we shall move on at this time. If a system is time
invariant but depends on current state (i.e., has memory) and
possesses some input, then we find

d

dt
x(t) = f (x, u).

If it is time-variable with memory, but with no input, we
write
d

dt
x(t) = f (t, x),

and so on. Analogous expressions can be written for the
second stage.

A natural way of producing a memoryless, composite
linear system is to let the impulse response function
degenerate into something proportional to a so-called Dirac
delta function, δ(t), which we can loosely define as a
function, which is zero everywhere but at zero, where it
integrates to 1.2 That is,
+t∫

−t

δ(t ′)dt ′.

The systemic meaning is that the subsystem now has no
memory: Only the present instantaneous input is passed
through the system, weighted by a coefficient that may (in a
non-autonomous system), or may not (autonomous system)
depend on time. For instance, in an autonomous system, we
have

x(t) =
t∫

t1

v(t ′)δ(t − t ′)u(t ′)dt ′ = v(t)u(t),

a linearly-weighted function of the input u.
We show next how the concepts that we have developed

can be used to solve simple linear differential equations.
Our space is far too limited to laboriously work out all the
details for the more complex models but we refer the reader
to standard sources such as Padulo and Arbib (1974) and
Luenberger (1979) and a number of other sources.

First, we justify the rubric for the impulse response func-
tion by inserting the Dirac delta function (the mathematical
version of an impulse or spike) as input into a forced
response solution, which weights the input by the memory
(the δ(t) function):

∞∫

−∞
δ(t)dt = 1

which comes about because δ(t ′) = 0 when and only when
t ′ = t .

2A rigorous development of
δ(t) requires the notion of generalized functions or, equivalently,

so-called distributions (Gelfand & Shilov, 1964).
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Even though we have to eschew most of the technicalities
associated with present developments, we pause to motivate
our larger points with a very simple case. Consider a
homogeneous, time invariant, linear system, with an input
but no initial condition, starting at t ′ = 0. Our differential
equation (which can be taken as describing our first
subsystem) is then

d

dt
x(t) = −ax(t) + u(t)

Our solution for the impulse response function is

h(t) = e(−at)

recalling that this time the t stands for the time difference
from t ′ = 0 to t ′ = t . We prove this claim by inserting the
proposed h function in the usual integral:

x(t) =
t∫

0

h(t − t ′)u(t ′)dt ′

=
t∫

0

e[−a(t−t ′)]u(t ′)dt ′

Taking the derivative we get

d

dt
x(t) =

t∫

0

(−a)e[−(t−t ′)]u(t ′)dt + u(t)

= −ax(t) + u(t)

This style of development can be employed to derive
the more general results we desire but fortunately, Pierre
Simon-Laplace, born a couple of decades after the passing
of Isaac Newton, gave us the useful Laplace transform. It
relies on the fact that most functions we are likely to meet
possess an infinite number of guises, one obtained from the
other via mathematical transformation. A desirable property
of such a transform, and one claimed by the Laplace
transform, is that the mapping from one representation to the
other is 1-1, that is the Laplace transform of a well-behaved
function of time is unique, and vice versa. In this case,

L {f (t)} = f(s)

Notice that the function will itself be different and a
function, now, of the so-called transform variable s. This
transform possesses many useful aspects. One is that the

transform of a derivative of f (t) is just f(s) itself multiplied
by s.

Now recall that the way in which memory expresses itself
in linear systems is by way of the convolution of h and the
input u(t). That is,

x(t) =
t∫

0

h(t − t ′)u(t ′)dt ′

=
t∫

0

e[−a(t−t ′)]u(t ′)dt ′

A second property of the transform is that it converts the
unwieldy convolution to a product in the s-space. Thus,

u(t) ∗ h(t) : L → u(s) × h(s).

Using these aspects of the transform to good advantage we
find that
d

dt
x(t) = −ax + u(t) : L → sx(s) = −ax(s) + u(s).

So, with simple algebra, we solve for x(s) to achieve

x(s) = u(s)
a + s

Now we can utilize the fact that the inverse Laplace
transform, L −1 of the right hand side is the convolution
where we find that h(t) is the exponential that we just earlier
proved through the other method. This is because the inverse
transform of 1/(a + s) is just e−(at), and we are done. We
have thus shown two independent ways of finding out what
the convolution in a very simple linear system is.

Applying the analysis: generalizing
the cascade model

We now use these tools to solve for a generalized version of
the cascade model (McClelland, 1979). In order to render
a fairly complex model into something that can be readily
comprehended, we take up the special case of two parallel
channels. We will call the first the signal or target channel
(channel I) and will call the other the flanker channel
(channel II). Each of these pathways proceeds in not only a
continuous flow fashion, but the overall system is governed
by homogeneous (i.e., time-invariant) linear differential
equations with two sequential subprocesses.

The original cascade model ends with a decision criterion
that is fixed within a trial. When met and exceeded,
the system entails a decision and consequent response.
Because the rest of the system is deterministic, in order
to introduce some modest stochasticity into the action,
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that criterion is assumed to vary from trial to trial with a
normal distribution. One of the first to employ this device
was Clark Hull 1952, the famous animal neo-behaviorist.
More within the realm of human cognitive psychology,
Grice and colleagues (Grice, Nullmeyer, & Spiker, 1977)
also modeled data with this construction. Dzhafarov (1993)
demonstrated the mathematical equivalence, once again
evoking the specter in the behavioral sciences of model
mimicking of a set of models obeying this principle vs. a
set with fixed criterion but stochastic activations (see, e.g.,
Townsend and Ashby, 1983, chapter 14).

In order to fulfill Eriksen and company’s hypothesis that
both input streams, the signal’s and the flanker’s, appear
to influence even the arm’s trajectory through the lift-off
of the hand to the final button press, we must reinterpret
the decision criterion as the final touch-down of the finger.
Figure 4 which represents as a flow diagram our cascaded,
continuous flow model for the flanker task. As in our earlier
general treatment xi will stand for the first sub-process
accepting input with i = 1, 2, and yj will represent the next
sub-process. We depict the cascade model as using feedback
loops circling back to sum with the input. This depiction is
therefore called a “closed loop system” in the literature.

Readers may wish to try their hand at drawing a flow-
diagram using the language employed by McClelland 1979
before turning to Fig. 4. His portrayal emphasizes that
each channel can be interpreted as “open loop” control
subsystems where the input is driving the state (i.e., x or
y) toward the input level, in a way that is proportional
to the difference between the input and the current level
(of x or y). In contrast, our closed loop portrayal reveals
how feedback control systems work. Although the two
guises are mathematically equivalent, in actual physical

construction of dynamic systems, the feedback control
architecture provides more stable systems.

The differential equations pertaining to the first level
(i.e., the x level) are

d

dt
x1(t) = kx1

(
u1(t) + w2,1(0)u2(t) − x1(t)

)
(1)

d

dt
x2(t) = kx2

(
u2(t) + w1,2(0)u1(t) − x2(t)

)
(2)

and those governing the second (y) level are

d

dt
y1(t) = ky1

(
x1(t) + w2,1(1)x2(t) − y1(t)

)
(3)

d

dt
y2(t) = ky2

(
x2(t) + w1,2(1)x1(t) − y2(t)

)
(4)

The notations in Fig. 4 are intended to aid interpretation the
various parameters in Eqs. 1-4. We let wi,j (k) stand for the
weight of channel i (associated with level k on the receptor
(node, etc.) in the next higher level j . Thus, w2,1(0) is the
weight at the 0th level (i.e., that of the input) on the input
from channel II (crossing) over to Channel I at level 1.

Note that we are arbitrarily setting what would be, say,
w1,1(0) to the value 1 because this can simply be considered
to scale the various parameters and variables. That is why
w1,1(0) doesn’t actually appear in the figure. Observe that
this structure permits forward cross-talk from one channel
to another, perhaps facilitatory, perhaps inhibitory. Also,
observe that the current value of the state is subtracted
from the overall input. The reader will now infer that, for
instance, w1,2(1) tells us the weight from the x stage and

u1 +
x 1 y 1

u2 + x 2 y 2

kx2w1,2(0) kx1w2,1(0)

-kx1

-kx2

+

+

k y1

k y2

ky1w2,1(1)ky2w1,2(1)

-ky1

-ky2

+

b 1

b 2

I

II

Fig. 4 A continuous flow instantiation of the cascade model. The small notations to the side of each element indicate multiplicative weights
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channel I (by definition, now at level 1) to channel II at the
y stage (level 2).

Next, ki,j where i = x, y and j = 1, 2 serve as rates
of change of channels 1 or 2 at either the x stage or the y

stage. At this one level, our version is more general than
McClelland’s. He assumed that ki,1 = ki,2, for i = x or
y. This implies that at level x, the gain or rate of change to
channel I was the same as for channel II and similarly for
the y level or sub-process. This means that although the w′s
allowed u1 to affect x1 differently than it did x2 the rate of
change at the next level had to be the same for both channels.
Our rendition is more general in this sense but also naturally,
more cumbersome.

In order to allow easier comparison with McClelland’s
(1979) matrix formulations, Eqs. 5-6 place our key
differential expressions in a vector and matrix format. The
arrows then directly picture the Laplace transform of these

time-descriptions over to the transform s space, also in
vector-matrix notation.(

ẏ1

ẏ2

)
= (ky1 ky2)

[
x1(t) + w2,1(1)x2(t) − y1(t)

x2(t) + w1,2(1)x1(t) − y2(t)

]
(5)

→ L

s

(
y1(s)

y2(s)

)
= (ky1 ky2)

[
x1(s) + w2,1(1)x2(s) − y1(s)

x2(s) + w1,2(1)x1(s) − y2(s)

]
(6)

The next expressions picture the s functions, having
solved for each x(s) and each y(s) in terms of the
inputs, weights, and s itself. Then, in order to acquire a
representation of the second y level in terms of everything
before, we must substitute the solution for the xs into that
of the ys, giving us

y1(s) =
{
kx1

u1(s) + w2,1(0)u2(s)

(s + kx1)(s + ky1)
+ w2,1(1)kx2

u2(s) + w1,2(0)u1(s)

(s + kx2)(s + ky1)

}
ky1 (7)

y2(s) =
{
kx2

u2(s) + w1,2(0)u1(s)

(s + kx2)(s + ky2)
+ w1,2(1)kx1

u1(s) + w2,1(0)u2(s)

(s + kx1)(s + ky2)

}
ky2 (8)

At this point, we are getting close to where greater ease
will transpire in our operations if we make the simplifying
assumption (following McClelland, 1979) that the input u

functions are step functions. He assumed that u(t) was 0 up
until t = 0 and then u(t) = 1 in either channel and this
input was assumed to remain on until a decisional criterion
was reached. This implied that the u1 information (e.g.,

feature, etc.) was coded the same as the u2 information. This
restriction is readily obviated by letting u1(t) not be equal to
u2(t) but both are, like McClelland’s input, step functions:
u1(t) = u1, a constant and the same for u2(t) = u2.

We can now (following McClelland, 1979) bring to bear
what are known as partial fraction operations that will make
it straightforward to apply inverse Laplace transforms.3 The
partial fraction decompositions are expressed as

3The are many expositions on partial fractions, but a quick and clear
description can be found in Wikipedia.

y1(s) =
(u1

s
+ w2,1(0)

u2

s

) kx1ky1

(s + kx1)(s + ky1)
+ w2,1(1)

(u2

s
+ w1,2(0)

u1

s

) ky1kx2

(s + ky1)(s + kx2)
(9)

y2(s) =
(u2

s
+ w1,2(0)

u1

s

) ky2kx2

(s + ky2)(s + kx2)
+ w1,2(1)

(u1

s
+ w2,1(0)

u2

s

) ky2kx1

(s + ky2)(s + kx1)
(10)

y1(s) = (u1 + w2,1(0)u2)

[
1

s
− 1

s + kx1

ky1

ky1 − kx1

− 1

s + ky1

kx1

kx1 − ky1

]

+w2,1(1)(u2 + w1,2(0)u1)

[
1

s
− 1

s + kx2

ky1

ky1 − kx2

− 1

s + ky1

kx2

kx2 − ky1

]
(11)

y2(s) = (u2 + w1,2(0)u1)

[
1

s
− 1

s + kx2

ky2

ky2 − kx2

− 1

s + ky2

kx2

kx2 − ky2

]

+w2,1(1)(u1 + w2,1(0)u2)

[
1

s
− 1

s + kx1

ky2

ky2 − kx1

− 1

s + ky2

kx1

kx1 − ky2

]
(12)
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And, the succeeding inverse transforms are readily found
to be

L −1 →
y1(t) = (u1 + w2,1(0)u2)

[
1 − ky1

ky1 − kx1

e−kx1 t − kx1

kx1 − ky1

e−ky1 t

]

+w2,1(1)(u2 + w1,2(0)u1)

[
1 − ky1

ky1 − kx2

e−kx2 t − kx2

kx2 − ky1

e−ky1 t

]

(13)

y2(t) = (u2 + w1,2(0)u1)

[
1 − ky2

ky2 − kx2

e−kx2 t − kx2

kx2 − ky2

e−ky2 t

]

+w1,2(1)(u1 + w2,1(0)u2)

[
1 − ky2

ky2 − kx1

e−kx1 t − kx1

kx1 − ky2

e−ky2 t

]
(14)

These, then, turn the solutions of the differential cascade
system equations into the real-time functions. We can see
that, due to the assumptions of time-invariance and also of
the elementary nature of the inputs, the final results have
essentially already integrated the convolutions and delivered
the consequent weighted exponential functions.

Ordinarily, at this point we would append decisional
(e.g., detection, classification, etc.) criteria in the channels
I, II with which y1(t) and y2(t) are compared on a
continuing basis. Then a final decision and response would
be implemented. For instance, when y1(t) and/or y2(t)

reaches its criterion it will provoke an response (e.g., a
0 or 1 output in each channel) which might then input
to a logic gate, for instance an OR or AND gate, in
order to arrive at the final decision and response. We
have constructed and implemented such models in many
studies over the past sixteen years (e.g., Eidels et al., 2011;
Townsend & Wenger, 2004, 2012; Wenger & Townsend,
2006). However, in the present context, the observer is
supposed to be ignoring the activation in the flanker channel
(channel II). Thus, we treat the signal channel (Channel
I) as leading to the continuous, indicator-like response
(representing the wavering, in-transit finger motion) with
the flanker information affecting that trajectory in either a
facilitatory or inhibitory manner.

In many flanker designs, there are two signals or signal
classes. In the present, exemplary modeling exercise, we
assume there is no substantive difference. We thereby
institute a vector dot product of (y1(t), y2(t)) by (b1, b2)

into z(t) = (y1(t), y2(t)).(b1, b2) which effectively
provides a weighted sum of the y outputs into the wavering
finger (i.e., z). The b1 entry can be assumed to always
weight the information coming in the signal channel (i.e.,
Channel I) and let b2 be, for example, a positive number,
for example, b2 = +b if the flanker (in Channel II) agrees
with the presented signal information but b2 = −b if the
flanker is similar to the other signal. We pause to observe

that this operation is similar to that of coactivation systems
(e.g., Townsend & Wenger 2004) where two channels feed
their combined activations into a final conduit. Usually, this
operation is a sum of two positive activations and is typically
unweighted. Therefore, the present model can be viewed as
a mild generalization of the coactivation concept. Lastly, we
can capture the ‘touchdown’ of the finger on a signal 1 or
signal 2 location by assuming that occurs when z(t) = +r1

or conversely z(t) = −r2) .
As in our other efforts modeling parallel systems, noise

should be added in applications. The ensuing mathematics
lie within rather abstruse regions of very general stochastic
differential equations, that can be extremely challenging to
solve analytically (e.g., for the first passage times), and such
concerns go far beyond our present aims. For illustration, we
have carried out a small set of simulations with this model.
Figure 5a shows a simulation results in the situation where
the flanker is neutral, Fig. 5b shows the result when the
flanker is consistent, and Fig. 5c shows the result when the
flanker is inconsistent. As can be seen in these three panels,
the predicted RTs are ordered as expected.

The generalities and constraints of this account

The systems analyzed here were limited to a set of
two sequentially linked, subsystems. Table 1 includes
Dondersian systems because we think it is important to
reveal how a general continuous flow dynamic system can
be rigorously morphed into a Dondersian system. However,
after that, the latter are of no further concern to us here.
All our subsequent systems are lumped, meaning that,
informally, input to the first subsystem has an instantaneous
effect that is instantaneously transmitted to the second
subsystem. This element is most critical for representing the
kind of dynamic presaged by the Eriksen and colleagues’
efforts. Our covered systems include no systems based
on partial differential equations nor any consideration of

759Atten Percept Psychophys  (2021) 83:748–762



(a)

(b) (c)

Fig. 5 Example activations for one trial in each of the three typical
conditions of the flanker task: a neutral flankers, b consistent flankers,
c inconsistent flankers. The upper trace in each panel shows the com-
bined activation of the target and flanker channels, and the bottom

trace shows the activation for the flanker channel alone. The choice
threshold is labeled as γ , and the RT on the trial marked by the vertical
reference line. The mean RTs for that condition (from 100 simulated
trials) is also noted in each panel

time-lags. Most of the complex systems encompassed in
the OPNETs of Goldstein and Fisher (1991) or even PERT
networks of Schweickert, Fisher, and Sung (2012) are
excluded. Although feedback is allowed within-subsystem as a
mark of dynamic stability, we eschew it across subsystems.
This is a limitation that will certainly be set aside in future
efforts given its obvious value in neural and behavioral
dynamics.

The most severe constraint on our taxonomy, in terms of
modern cognitive modeling, is the absence of stochasticity.
Most of our theorems and predictions should be valid in
the mean but ultimately researchers must turn to stochas-
tic systems. The best studied continuous state and time
processes are founded on strong Markov assumptions and
Martingale properties (Karlin & Taylor, 1981; Smith & Van
Zandt, 2000) but still of very high mathematical complex-
ity, will be the class of diffusion processes. In particular,
the drift-diffusion (Wiener) process developed and explored
by many years by Ratcliff and colleagues (beginning with

Ratcliff, 1978), took some time to take hold in the field.
That is, though one of the simplest diffusion systems, it is
still much more complicated than simpler models, like the
linear ballistic accumulator model of Brown and Heath-
cote (2008) or even models with, say, discrete time but
continuous state space as in the models explored by Link
and Heath (1975) or discrete state but continuous time via
the accumulator model of Smith and Vickers (1989). The
exclusion of a huge set of dynamic systems, permits a deep
and general penetration of sequential, lumped systems and,
we hope, provides the potential for furthering the kind of
theorizing foreseen by Eriksen.

With respect to connecting theory and data, two natural
next steps seem apparent. The first is to broaden the set of
measures that could be used to assess response competition
in continuous flow models. This could include those
discussed in the present collection by Erb et al. 2020, the use
of force transducers (Ray, Slobounov, Mordkoff, Johnston,
& Simon, 2000), or potential modifications to the lateralized
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readiness potential (e.g., Mordkoff & Grosjean, 2001;
Wenger & Rhoten, 2020). The second step, pertinent to any
of the possible dependent variables, concerns predictions for
factorial interactions in the observed dependent variables
(Schweickert, 1978; Sternberg, 1969; Townsend & Ashby,
1983). A set of theory-driven methodologies has arisen from
such questions referred to as systems factorial technology
(Little, Altieri, Yang, & Fific, 2017; Townsend & Nozawa,
1995). One critical key of systems functioning is whether
the influence of two or more factors is additive in the
dependent variable. The classical dependent variable has
been response time (Sternberg, 1969; Townsend & Ashby,
1983). Foundational work by Schweickert (1978, 1985)
established new results for response times but also extended
such analyses to states of the system. This type of
exploration is quite challenging because he considered
completely general composite systems of the type found
in our above taxonomy. For that reason, the targeted
systems were deterministic as in our taxonomy, but should
be relevant to expected (mean) values of the dependent
variables. One of our goals is to extend such deep analyses
to memoried continuous flow systems, again first confining
ourselves to deterministic systems.
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